Scientific investigation and reasoning. The student, for at least 40% of instruct		•	ïeld investigations	following
safety procedures and environmentally appropriate and ethical practices. The stud	lent is expected to	:		
(A) demonstrate safe practices during laboratory and field investigations as				
outlined in the Texas Safety Standards; and				
(B) practice appropriate use and conservation of resources, including disposal,				
reuse, or recycling of materials.	_			
(2) Scientific investigation and reasoning. The student uses scientific inquiry n	nethods during lab	oratory and field in	vestigations. The	student is
expected to:	ŭ	•	ŭ	
(A) plan and implement comparative and descriptive investigations by making	1			
observations, asking well-defined questions, and using appropriate equipment				
and technology;				
(B) design and implement experimental investigations by making observations,				
asking well-defined questions, formulating testable hypotheses, and using				
appropriate equipment and technology;				
(C) collect and record data using the International System of Units (SI) and				
qualitative means such as labeled drawings, writing, and graphic organizers;				
(D) construct tables and graphs, using repeated trials and means, to organize				
data and identify patterns; and				
(E) analyze data to formulate reasonable explanations, communicate valid	1			
conclusions supported by the data, and predict trends.				
(3) Scientific investigation and reasoning. The student uses critical thinking, so	ciontific reasoning	and problem solvi	na to make inform	ad dacisions
and knows the contributions of relevant scientists. The student is expected to:	neriunc reasoning,	and problem solvi	ng to make imomi	eu uecisions
(A) in all fields of science, analyze, evaluate, and critique scientific explanations		I	I	
by using empirical evidence, logical reasoning, and experimental and				
observational testing, including examining all sides of scientific evidence of those				
scientific explanations, so as to encourage critical thinking by the student;				
Solontino explanations, so as to encourage official trimking by the student,				
(B) use models to represent aspects of the natural world such as a model of				
r ·				
Earth's layers;				
(C) identify advantages and limitations of models such as size, scale, properties,				
and materials; and				
(D) relate the impact of research on scientific thought and society, including the				
history of science and contributions of scientists as related to the content.				
(4) Scientific investigation and reasoning. The student knows how to use a				
variety of tools and safety equipment to conduct science inquiry. The student is				

(A) use appropriate tools to collect, record, and analyze information, including				
journals/notebooks, beakers, Petri dishes, meter sticks, graduated cylinders, hot				
plates, test tubes, triple beam balances, microscopes, thermometers, calculators,				
computers, timing devices, and other equipment as needed to teach the				
curriculum; and				
(B) use preventative safety equipment, including chemical splash goggles,				
aprons, and gloves, and be prepared to use emergency safety equipment,				
including an eye/face wash, a fire blanket, and a fire extinguisher.				
into daning an oyonado wadn, a mo blankot, and a mo oxangalonor.				
(5) Matter and energy. The student knows the differences between elements and	compounds. The	student is expecte	ed to:	
(A) know that an element is a pure substance represented by chemical symbols;				
(B) recognize that a limited number of the many known elements comprise the				
largest portion of solid Earth, living matter, oceans, and the atmosphere;				
(C) differentiate between elements and compounds on the most basic level; and				
Supporting Standard				
(D) identify the formation of a new substance by using the evidence of a possible				
chemical change such as production of a gas, change in temperature, production				
of a precipitate, or color change.				
(6) Matter and energy. The student knows matter has physical properties that car	n be used for class	sification. The stud	lent is expected to	
(A) compare metals, nonmetals, and metalloids using physical properties such as				
luster, conductivity, or malleability; Supporting Standard				
(B) calculate density to identify an unknown substance; and Supporting				
Standard				
(C) test the physical properties of minerals, including hardness, color, luster, and				
streak.				
(7) Matter and energy. The student knows that some of Earth's energy resources	are available on a	nearly perpetual	basis, while others	s can be
renewed over a relatively short period of time. Some energy resources, once deple	eted, are essential	ly nonrenewable. T	The student is exp	ected to:
(A) research and debate the advantages and disadvantages of using coal, oil,				
natural gas, nuclear power, biomass, wind, hydropower, geothermal, and solar				
resources; and				
(B) design a logical plan to manage energy resources in the home, school, or				
community.				
(9) Force motion and energy. The object tracks force and motion are related	to notontial and liv	notic operation The	atudant is average	od to:
(8) Force, motion, and energy. The student knows force and motion are related (A) compare and contrast potential and kinetic energy; Supporting Standard	<u>o potential and Kir</u>	<u>leuc energy. The</u>	Student is expecte	iu iu.
(B) identify and describe the changes in position, direction, and speed of an				
lobiect when acted upon by unbalanced forces:				

(C) calculate average speed using distance and time measurements;				
Supporting Standard				
(D) measure and graph changes in motion; and Supporting Standard				
(E) investigate how inclined planes and pulleys can be used to change the				
amount of force to move an object.				
(9) Force, motion, and energy. The student knows that the Law of Conservation	of Energy states t	hat energy can ne	ither be created no	or destroyed, it
just changes form. The student is expected to:	0,	0,		
(A) investigate methods of thermal energy transfer, including conduction,				
convection, and radiation;				
(B) verify through investigations that thermal energy moves in a predictable				
pattern from warmer to cooler until all the substances attain the same				
temperature such as an ice cube melting; and				
(C) demonstrate energy transformations such as energy in a flashlight battery				
changes from chemical energy to electrical energy to light energy. Supporting				
Standard				
(10) Earth and space. The student understands the structure of Earth, the rock of	vcle, and plate tec	tonics. The studer	nt is expected to:	
(A) build a model to illustrate the structural layers of Earth, including the inner			,	
core, outer core, mantle, crust, asthenosphere, and lithosphere;				
(B) classify rocks as metamorphic, igneous, or sedimentary by the processes of	1			
their formation;				
(C) identify the major tectonic plates, including Eurasian, African, Indo-Australian,				
Pacific, North American, and South American; and				
(D) describe how plate tectonics causes major geological events such as ocean				
basins, earthquakes, volcanic eruptions, and mountain building.			01.014/1	
(11) Earth and space. The student understands the organization of our solar syst	em and the relatio	nships among the	various bodies tha	at comprise it.
The student is expected to:		,		· ·
(A) describe the physical properties, locations, and movements of the Sun,				
planets, Galilean moons, meteors, asteroids, and comets;				
(B) understand that gravity is the force that governs the motion of our solar				
system; and Supporting Standard				
(C) describe the history and future of space exploration, including the types of				
equipment and transportation needed for space travel.				
(12) Organisms and environments. The student knows all organisms are classif				
groups share similar characteristics which allow them to interact with the living and	I nonliving parts of	their ecosystem.	The student is exp	ected to:
(A) understand that all organisms are composed of one or more cells;				
(B) recognize that the presence of a nucleus determines whether a cell is				
prokaryotic or eukaryotic;				

	_		
(C) recognize that the broadest taxonomic classification of living organisms is			
divided into currently recognized Domains;			
(D) identify the basic characteristics of organisms, including prokaryotic or			
eukaryotic, unicellular or multicellular, autotrophic or heterotrophic, and mode of			
reproduction, that further classify them in the currently recognized Kingdoms;			
Supporting Standard			
(E) describe biotic and abiotic parts of an ecosystem in which organisms interact;			
and			
(F) diagram the levels of organization within an ecosystem, including organism,			
population, community, and ecosystem.			